JOURNAL OF MATERIALS SCIENCE 33 (1998) 3529-3539

Micromechanics of rubber-toughened polymers
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A new micromechanical model is provided to account for the full interaction between rubber
particles in toughened polymers. Three-dimensional large deformation elastic—plastic finite
element analysis is carried out to obtain the local stress and strain fields and then

a homogenization method is adopted to obtain the effective stress—strain relation. The
dependence of the local stress and strain distributions and effective stress—strain relation
on phase morphology and mechanical properties of rubber particles is examined under
various transverse constraints. The profile for the effective yield surface is obtained at
four different particle volume fractions. It is shown that stress triaxiality affects significantly
the effective yield stress and the local stress concentrations. Rubber cavitation and matrix
shear yielding are two coupled toughening mechanisms; which one occurs first depends on
the properties of rubber particles and matrix and the imposed triaxiality. Rubber cavitation
plays an important role in the toughening process under high tensile triaxial stresses.
Axisymmetric modelling may underestimate, and two-dimensional plane-strain modelling
may overestimate, the inter-particle interaction compared with three-dimensional
modelling. © 7998 Kluwer Academic Publishers

1. Introduction

Studies of the inter-relationship between microstruc-
ture and macroscopic property have become increas-
ingly important in order to gain a better scientific
understanding of the mechanical behaviour of poly-
mer blends and to develop new material microstruc-
tures. The evaluation of an effective stress—strain
relation of a heterogeneous material from those of
its constituents is a classic micromechanics problem.
Aboudi [1] has given a comprehensive overview on
this topic. Because the mathematics involved in deter-
mining the analytical solutions of the local stress and
strain fields is often intractable for multiple-particle
systems, numerical analysis is generally used. Tong
and Mei [2] used two-scale and multi-scale methods
for heterogeneous media to derive the effective consti-
tutive relations for composite materials consisting of
fibres and matrix. The periodic solutions at the micro-
and meso-scale levels are first solved by the finite
element method. These solutions are then used to
establish the effective constitutive relations at the mac-
ro-scale level.

In recent years, the understanding of microm-
echanics and micromechanisms of rubber-toughened
polymers has been greatly advanced through exten-
sive experimental and theoretical work [3-5]. Two
important toughening mechanisms are identified for
rubber-modified epoxy and nylon, that is, localized
shear yielding due to stress concentration at the equa-
tor of rubber particles and dilatation deformation due
to the growth of voids formed by rubber cavitation or
interfacial debonding [6-11]. Yee and co-workers
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[7-10] and Wu and Mai [11] reported experimental
evidence on the pre-requisite of rubber cavitation to
relieve the triaxial stress plane-strain condition asso-
ciated with the crack tip for extensive plastic deforma-
tion to be developed in the matrix. On the other hand,
Guild and Young [12] and Huang and Kinloch
[13,14] used cylindrical or two-dimensional plane-
strain periodic cell models to study the toughening
mechanisms in rubber-modified epoxy. They found
that the rubber particles behave just like holes (be-
cause these authors used rather low bulk moduli of
66.67 and 33.33 MPa for the rubber particles). It
seemed, therefore, that rubber cavitation and matrix
shear yielding could be two independent toughening
mechanisms. In a subsequent paper [15], Huang and
Kinloch did recognize the problem of using a low
Poisson’s ratio of 0.49 for the rubber particles and
they also discussed the influence of the rubber bulk
modulus on the sequence of the toughening mecha-
nisms. They clarified that rubber cavitation favours
both extensive shear yielding and plastic hole growth
in the epoxy matrix. Later, Bucknall et al. [16] also
pointed out that the typical rubber bulk modulus
should be around 2000 MPa and not as low as those
used elsewhere [12-14]. Wu et al. [17, 18] studied the
effects of volume fraction and bulk modulus of rubber
particles on the constitutive relation and fracture
toughness of rubber-modified polymers using two-
dimensional plane-strain elastic—plastic finite ele-
ment analysis. They confirmed that the rubber bulk
modulus does have a significant effect on the hydros-
tatic tension in the rubber particles and on the plastic

3529



deformation in the ligament between the crack tip and
the particle. Guild and Kinloch [19, 207] have recently
provided a spherical periodic cell model to investigate
the stress distribution in rubber-modified epoxy under
triaxial stress using axisymmetric elastic and elas-
tic—plastic finite element analyses with proper consid-
eration of the rubber bulk modulus in order to
overcome the shortcomings of their previous model
[13]. It is noted [12—14] that the cylindrical model is
inherently inaccurate in that it reflects neither a regu-
lar distribution nor a random distribution of rubber
particles and cannot predict coherent growth of a lo-
calized shear zone. The two-dimensional plane-strain
model can successfully simulate the initiation and
growth of the localized shear zone but cannot accu-
rately describe the effect of rubber cavitation. The
spherical model is based on the assumption that the
overall effect of inter-particle interaction for random
distribution is an “average” from all the neighbouring
particles and not directional, which is reasonable for
low volume fractions. The removal of all directional
interactions in the spherical model may lead to an
underestimation of the inter-particle interaction effect.
The method of load application for the spherical
model usually requires an iterative procedure, which is
more complex than that for the cylindrical model or
two-dimensional plane-strain model.

Owing to the complexity of and time required for
three-dimensional problems, there have been very few
studies on three-dimensional micromechanical model-
ling. Hom and McMeeking [21] pointed out that the
coupling effects may be stronger in two-dimensional
problems for cylindrical holes than in three-dimen-
sional problems for initially spherical voids in their
work on the void growth in an elastic—plastic material;
but they were not concerned with rubber toughening
mechanisms. Sue and Yee [22] gave a quite simple
micromechanical model of the spherical rubber par-
ticle cavitation process at the crack tip using a combi-
nation of Irwin’s crack-tip elastic analysis, slip-line
field theory and Dewey’s closed-form elastic solution.
They incorporated the stress—strain fields around an
existing plastic zone in front of the crack as the bound-
ary condition to study the stress—strain field around
a spherical rubber particle ahead of the crack tip.
Chen and Tong [23] presented aligned and staggered
periodic cell models to obtain the dependence of the
effective elastic moduli of in situ liquid crystalline
polymer LCP composites on spacing and aspect ra-
tios, and arrangement of the orthotropic LCP phase.
Chen and Mai [24] recently provided a three-dimen-
sional periodic face-centred cuboidal cell model to
study the effects of triaxiality on the toughening mech-
anisms of rubber-modified epoxy using three-dimen-
sional elastoplastic finite element analysis. They found
that rubber cavitation plays an important role in the
toughening process under a high tensile triaxial stress
state.

Sue and Yee [8] observed experimentally that shear
yielding is initiated at the equator of particles, then
shifts towards the pole around the interface and finally
is localized to form shear bands in the direction of
+45° with the applied tensile stress. Huang and
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Kinloch [13, 14] used a two-dimensional plane-strain
cell model with one particle surrounded by four neigh-
bouring particles in a staggered layout to demonstrate
successfully the observed localized shear zones. Hence,
it seems that localized shear bands are formed more
easily in a staggered periodic layout than in a regular
periodic layout.

In this paper, we carry out three-dimensional large
deformation elastic—plastic finite element analysis to
study the effects of phase morphology and mechanical
properties of particles on local stress concentration
and the effective stress—strain relation under various
constraint and loading conditions by a three-dimen-
sional periodic cell model. In order to simulate both
the cavitation and shear-banding processes, a face-
centred cubic layout is chosen to represent the dis-
tribution of rubber particles in the matrix. Full
three-dimensional interaction between particles is
accounted for by prescribing periodic symmetry
boundary conditions. The fcc layout is preferred to
the bcc layout because it is easier to simulate the
initiation and growth of shear bands. However, we
have not performed the calculations to see if any
significant difference would exist if b ¢ ¢ is used instead
of fcc.

2. Micromechanical model

The matrix is assumed to be perfectly elastic—plastic
governed by the Von Mises criterion and the rubber
particles are elastic. The material properties used in
the numerical study are given in Table I unless other-
wise stated. The matrix has a Young’s modulus of
3500 MPa, Poisson’s ratio of 0.35 and yield strength of
80 MPa, which are typical of many commercially
available epoxy resins.

A representative unit of the fcc periodic micro-
structure is shown in Fig. 1. Under symmetric loading
condition, a one-eighth face-centred cuboidal cell can
be chosen for FE analysis due to the periodic sym-
metry of the problem. The periodic symmetry require-
ments are satisfied by imposing the following
constraint equations on the corresponding surfaces of
the cell

u,=0 t,=t,=0 atx=0 (1a)
u,=0 t,=t,=0 aty=0 (1b)
u,=0 t,=t,=0 atz=0 (Ic)
u,=U, t,=t,=0 atx=a (2a)
u,=U, t,=t.=0 aty=a (2b)
u,=U, t,=t,=0 atz=a (2¢)

where a is the cell length, u,, u, and u, are components
of the displacement vector u along x-, y- and z-direc-
tions, t,, t,, and ¢, are components of surface traction
t along x-, y- and z-directions, Uy, Uy, and U, are
displacement constants. The surfaces of x =0, y =0
and z = 0 are symmetric planes. The surfaces of x = a,
y =a and z = a are maintained straight and move
parallel with respect to their original shapes during
deformation due to the periodic requirement.



TABLE I Material properties for matrix and rubber particles

Phase Young’s modulus Poisson’s Yield stress
(MPa) ratio (MPa)

Matrix 3500 0.25 80

Rubber particles 1-100 0.49-0.4999 -
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Figure 1 Three-dimensional periodic micromechanical model.

The effective stress, ¢, and strain, €°, are obtained
by averaging the local stress, o, and strain, €, in the
cell, that is

c° = Vig“Vﬂch
= i [ r®tds (3)
VQ.)SQ
e = i [ edV
Va Jv,
= ¢° (4)

where r is the position vector, t is the traction vector
acting on the cell surface, €° is the constant strain
tensor dependent on the uniform normal displacement
U, on the cell surface, V, and S, represent the cell
volume and surface, respectively. We use the equilib-
rium condition without volume forces, i.e. V-o = 0, to
obtain the last equality of Equation 3.

The effective elastic constants can be derived from
the following expressions

1
Syecx = E [chx - Ve(G;y + Gzz)] (Sa)
e 1 e ef e e
&y = E [ny —V (Gzz + Gxx)] (Sb)
e 1 e ef e
€, = E [Gzz % (Gxx + G)eiy)] (SC)

where E° is the effective Young’s modulus and v° the
effective Poisson’s ratio. The effective bulk modulus
can be calculated by the relation: k® = E°/3(1 — 2v°) .
The effective stress triaxiality is defined by
R = 2 (©)
GS

where the effective mean stress o, = 6 1/3, the effec-
tive Von Mises stress a¢ = (3S°: S°/2)'/2, 8¢ is the devi-
atoric part of the effective stress ¢°, S° = c° — ol
[25].

We can obtain the local stress and strain fields at
different effective stress triaxiality by adjusting the
uniform normal displacement increments of each face
of the cell to ensure that the average true stress on
each face maintains the desired value [21]. In our
calculations, U, is equal to U, and the transverse
constraint parameter is defined by o = U,o/U,, =
U,o0/U.o. The influence of effective stress triaxiality can
be studied by varying the transverse constraint para-
meter. From Equations 5 and 6 we know that R¢ de-
pends only on o and v° in the elastic regime. When o is
kept constant, the surfaces x = a and y = a can move
freely in the transverse direction. This corresponds to
macroscopic uniaxial tension, that is, of, # 0 and
6% =0y, =0. o =0 corresponds to macroscopic
uniaxial deformation (i.e. biaxial plane-strain condi-
tion) in which €7, # 0 and &5, = €5, = 0. o = 1 corres-
ponds to macroscopic equi-triaxial tension, that is,

e __ ¢ __ _¢e
Oxx = ny = O0,,.

3. Results and discussion

Four particle volume fractions of 0.209%, 1.676%,
13.40% and 26.18% were examined with respect to
the particle radius to cell length ratio of 0.1, 0.2, 0.4
and 0.5. The PATRAN program was used to generate
the mesh automatically in the one-eighth face-centred
cuboidal cell for the four particle volume fractions.
The undeformed mesh for the particle volume fraction
of 26.18% is shown in Fig. 2. Three-dimensional large
deformation elastoplastic finite element analysis was
carried out for the particle/matrix system up to a
macroscopic extension ratio of 35% incrementally by
the ABAQUS program on an ALPHA STATION
500. For comparison, we also used the same mesh to
do the calculations for the void/matrix system with
rubber particles replaced by voids. True stress and
logarithmic strain were used in the analysis.

3.1. Effects of particle volume fraction and
effective stress triaxiality
By homogenization of the three-dimensional FE re-
sults, the effective stress—strain curves under macro-
scopic uniaxial tension at the particle volume fractions
0f 0.209%, 1.676%, 13.40% and 26.18% are plotted in
Fig. 3. The dependence of effective Young’s modulus,
Poisson’s ratio and yield stress normalized by the
corresponding matrix mechanical property on the
particle volume fraction obtained under macroscopic
uniaxial tension is shown in Fig. 4. Particle Young’s
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Figure 2 Undeformed mesh for the particle/matrix system with
particle volume fraction f; = 26.18%.

True stress (MPa)

0 1 1 1 1 1 1

0 0.05 0.10 0.15 0.20 0.25 0.30 0.35
Log strain

Figure 3 Effective stress—strain curves under macroscopic uniaxial
tension at various particle volume fractions. (@, A, H, @) rub-
ber/matrix system; (O, A, O, O) void/matrix system. f;: (——)O0,
(O, ®)0.21%, (A, A) 1.68%, (M, ) 13.40%, (@, O) 26.18%.

modulus is 2 MPa and Poisson’s ratio is 0.499833 with
a bulk modulus of 2000 MPa.

We can see that the level of effective stress decreases
with increasing particle volume fraction. There is an
apparent linear dependence of effective Young’s
modulus, Poisson’s ratio and yield stress on particle
volume fraction within the range we have examined.
This trend is consistent with the uniaxial tensile
Young’s modulus and yield stress results obtained by
Yee and Pearson [7]. Both the effective Young’s
modulus and yield stress decrease with increasing
particle volume fraction. Effective Poisson’s ratio in-
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Figure 4 Normalized effective (@, 0O) Young’s modulus, (H, )
Poisson’s ratio and (A, A) yield stress versus particle volume
fraction. (@, M, A) rubber/matrix system; (O, [, A) void/matrix
system.

creases with increasing particle volume fraction for the
particle/matrix systems but decreases for the void/
matrix systems. When compared with the two-dimen-
sional plane-strain finite element results by Wu et al.
[17], the effective stress obtained from the three-di-
mensional analysis reaches a higher magnitude. For
example, the effective yield stress is about 20% higher
for three-dimensional modelling than for two-dimen-
sional plane-strain modelling at a particle volume
fraction of 26%.

The predicted values for the effective Young’s
modulus at various particle volume fractions are com-
pared with experimental data [7] and other theoret-
ical results [1,20,26], as shown in Fig. 5. Here we use
the same material properties as Yee and Pearson [7]
and Kinloch and Guild [20]. Young’s modulus of the
epoxy matrix is 2965 MPa and Poisson’s ratio is 0.375
with a bulk modulus of 3953 MPa. Young’s modulus
of rubber particles is 1 MPa and Poisson’s ratio is
0.49992 with a bulk modulus of 2083 MPa. We can see
that the face-centred cuboidal model results agree well
with the experimental data (and much better than the
spherical model). The small difference observed can be
associated with the difference in the assumed and real
distributions of the rubber particles for FEA and in
experiment, respectively. It is further noted that both
the fcc model results and experimental data lie be-
tween the approximate lower and upper limits cal-
culated using the analysis of Ishai and Cohen [26] for
a regular cubic packing; but the experimental data are
much closer to the upper limit. The predicted values of
effective Young’s modulus by the spherical model [20]
exceed Ishai and Cohen’s approximate upper limit
[26] and Voigt’s upper bound obtained from the effec-
tive shear and bulk moduli using the rule of mixtures
[1]. This discrepancy may arise from the removal of
all directional interactions in the spherical model [20].



3000

2500

2000

1500 |-

1000 [t

Effective Young's modulus (MPa)

500 [

0 5 10 15 20 25 30
Volume fraction of particles (%)

Figure 5 Comparison of (@) the predicted values for the effective
Young’s modulus at various particle volume fractions with (@)
experimental data [7] and other theoretical models. (——) rule of
mixtures, Voigt and Reuss [1], (W) spherical modelling [20], (——-)
approximate limits [26].

However, it is more likely to be caused by the inap-
propriate way of calculating the effective Young’s
modulus from the ratio of the sum of all y-reactions-
to-earth along AB and the y-strain as explained in Fig.
2 of [20]. According to Equations 3-5, under uniaxial
tension, this ratio is equal to the effective Young’s
modulus for the square and cylindrical cell models.
But this method of calculating the Young’s modulus is
not valid in general, and particularly for the spherical
cell model. It is more appropriate to determine the
effective Young’s modulus and Poisson’s ratio from
Equation 5 using the definition of the effective stress
and strain from Equations 3 and 4. We expect that the
effective Young’s modulus calculated from the spheri-
cal cell model using the appropriate Equations 3-5
will lie below the Voigt upper bound. But without
performing the actual calculations, we cannot evaluate
how close the predicted values will be to the experi-
mental data.

The profiles of the effective initial yield surface
for both particle/matrix and void/matrix systems are
plotted in Fig. 6. Particle Young’s modulus is 2 MPa
and Poisson’s ratio is 0.499833 with a bulk modulus of
2000 MPa. The shape of the effective initial yield sur-
face for the particle/matrix system is different from
that for the void/matrix system. This difference be-
comes larger with increasing particle volume fraction.
At low triaxiality the effective initial yield stress for the
particle/matrix and void/matrix systems is almost the
same, while at high triaxiality it drops more rapidly
for the latter than the former material system. These
results confirm that particle cavitation is conducive to
shear yielding at high triaxiality although it may not
be important at low triaxiality.

The contour plots of hydrostatic pressure and Von
Mises stress at a macroscopic extension ratio of 1.4%
in the z-direction for the particle/matrix system with
a particle volume fraction of 26.18% under macro-

Jog
¥
b

Effective Von Mises stress, ¢

0.4 | ‘O‘Q . | ‘"-.«' \K
o2 1 O E’ Lt& ‘ 1-\\ \\
0 D S "‘oﬁu—a

1
0 1 2 3 4 5 6
Effective mean stress, o,,/0,

Figure 6 Profile of effective yield surface at various particle
volume fractions. (@, A, Hl, @) rubber/matrix system; (O, A, [, O)
void/matrix system. fi: (——) 0, (@, O) 0.21%, (A, A) 1.68%, (A, )
13.40%, (@, O) 26.18%.

scopic uniaxial tension (o is only a constant) and
uniaxial deformation (o = 0) are shown in Figs 7 and
8. The symbol “ + ” stands for compression and “ —”
for tension and all stresses are in MPa.

Rubber particles sustain almost constant dilata-
tional stress whose magnitude is similar to the average
dilatational stress while the Von Mises stress inside
the rubber particles tends to zero. The matrix sustains
compression near the pole and tension near the equa-
tor under macroscopic uniaxial tension; but it may
also sustain tension under macroscopic uniaxial defor-
mation. Maximum Von Mises stress in the matrix is
reached at the equator of rubber particles with the
shortest distance between particles. So shear yielding
occurs there first. After that, the shear yielding zone
shifts from the equator towards the 45° region around
the particle-matrix interface and finally forms localiz-
ed shear bands. These results are consistent with the
observations in the PC/hole experiments by Sue and
Yee [8]. Maximum dilatational stress in the matrix is
also reached at the equator of rubber particles. With
the application of transverse constraints the local
dilatational stress increases while local Von Mises
stress decreases. This shows that transverse constraint
is beneficial for cavitation but it defers shear deforma-
tion.

The dependence of maximum dilatational stress,
direct stress and Von Mises stress concentration fac-
tors on particle volume fraction under macroscopic
uniaxial tension is shown in Fig. 9. The stress concen-
tration factor is defined as the ratio of local stress to
corresponding average stress in the elastic range.
Clearly, all the three maximum stress concentration
factors increase with increasing particle volume frac-
tion. The void/matrix system has larger stress concen-
trations than the particle/matrix system. Maximum
Von Mises stress and direct stress concentration fac-
tors are 1.91 and 2.08 under macroscopic uniaxial
tension for the void/ matrix system with a particle
volume fraction of 0.21%. Owing to the overlapping
of stress fields between particles, the maximum
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Figure 7 Contour plots of hydrostatic pressure and Von Mises stress for the particle/matrix system at a particle volume fraction of 26.18%
under macroscopic uniaxial tension with a macroscopic extension ratio of 1.4% in the z-direction: (a) hydrostatic pressure, (b) Von Mises

stress.

Von Mises stress and direct stress concentration fac-
tors increase to 2.47 and 2.67 at a particle volume
fraction of 20%, respectively. Huang and Kinloch
[13, 14] predicted the maximum Von Mises stress and
direct stress concentrations to be 2.21 and 2.43 by the
cylindrical model and 3.81 and 4.36 by the two-dimen-
sional plane-strain model at a particle volume fraction
of 19% (see Table ITin [13, 14]). They showed a steady

3534

linear rise in the Von Mises stress concentration with
particle volume fraction by two-dimensional plane-
strain modelling but a slower increase up to a particle
volume fraction of about 30% by cylindrical model-
ling. The fracture toughness of rubber-modified epoxy
does indeed increase steadily with increasing rubbery
volume fraction according to many experimental obser-
vations [13, 14]. In comparison, our three-dimensional
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Figure 8 Contour plots of hydrostatic pressure and Von Mises stress for particle/matrix system at a particle volume fraction of 26.18% under
macroscopic uniaxial deformation with a macroscopic extension ratio of 1.4% in the z-direction: (a) hydrostatic pressure, (b) Von Mises stress.

model shows that the axisymmetric model underesti-
mates while the two-dimensional plane-strain model
overestimates the increasing rate of stress concentra-
tions with particle volume fraction.

The hydrostatic tension inside the rubber particles,
maximum direct stress and maximum Von Mises
stress in the matrix at various effective stress triaxiality
by the face-centred cuboidal cell model using three-

dimensional elastic finite element analysis for the par-
ticle/matrix and void/matrix systems are shown in
Table II. For comparison, we use the same material
properties and elastic analysis as given in Guild and
Kinloch [19]. The volume fraction of rubber particles
or voids is 20%. The matrix has Young’s modulus of
3000 MPa, Poisson’s ratio of 0.35 and bulk modulus
of 3333 MPa. For the rubber particles, the Young’s
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Figure 9 Maximum stress concentrations versus particle volume
fraction under macroscopic uniaxial tension. (@, H, A) rubber/
matrix system, (O, 0, A) void/matrix system. (@, O) Von Mises,
(M, OJ) mean stress, (A, A) direct stress.

modulus is 1 MPa, Poisson’s ratio 0.4999 and bulk
modulus 2083 MPa. The calculated effective Young’s
moduli are 2119 and 2025 MPa and Poisson’s ratios
0.3833 and 0.3231 for the particle/matrix and void/
matrix systems, respectively. The effective stress was
kept at 100 MPa in the z-direction and but varied in
the x- and y-directions.

Hydrostatic tension inside the rubber particles in-
creases, while maximum direct stress and Von Mises
stress in the matrix decrease with increasing lateral
tension in the x- and y-directions for the rubber par-
ticle/matrix system. From Table II we can see that the
spherical model gives a good prediction of the hydros-
tatic tension inside rubber particles but somewhat
lower increasing rate of the direct stress and Von

Mises stress concentrations in the matrix as the effec-
tive stress triaxiality decreases compared with the
three-dimensional model. For example, the three-di-
mensional model predicts the maximum direct and
Von Mises stresses in the matrix increase by a factor of
1.43 and 3.93 as the effective stress system varies from
100:100:100 MPa to 60:60:100 MPa, while the
values predicted by the spherical model are only 1.27
and 3.02. Maximum direct stress and Von Mises stress
are much higher for the void/matrix system than for
the rubber particle/matrix system under a given effec-
tive stress system. The difference in the local stress
fields between the rubber particle/matrix and void/
matrix systems becomes larger with increasing effec-
tive stress triaxiality.

It has been demonstrated that a high tensile triaxial
stress state is helpful for rubber cavitation. However, it
defers the development of matrix shear deformation in
the particle/matrix system. After cavitation, the local
Von Mises stress in the matrix increases substantially
at high triaxiality. Owing to the high triaxiality near
a crack tip, rubber particles in the neighbourhood can
sustain much higher hydrostatic tension than particles
located elsewhere and so they can easily cavitate be-
fore shear yielding occurs in the surrounding matrix.
Therefore, rubber cavitation is essential to promote
extensive plastic deformation in a toughening process
at high triaxiality, although it may not be important at
low triaxiality.

3.2. Effects of particle Young’s modulus

The dependence of the effective Young’s modulus,
Poisson’s ratio, bulk modulus and yield stress nor-
malized by the corresponding matrix mechanical
property on the particle Young’s modulus at a particle
volume fraction of 26.18% obtained under macro-
scopic uniaxial tension is shown in Fig. 10. The par-
ticle Poisson’s ratio is 0.499833. All the effective
Young’s modulus, Poisson’s ratio, bulk modulus and
yield stress increase with increasing particle Young’s

TABLE II Effects of effective stress triaxiality on hydrostatic tension inside rubber particles and maximum direct stress and Von Mises

stress in the matrix

c . € . €
O%yi Oyt OF

Hydrostatic tension inside

Maximum direct stress

Maximum Von Mises

(MPa) R rubber particles (MPa) in matrix (MPa) stress in matrix (MPa)
3-D [19] 3-D [19] 3-D [19]
Particles
100:100: 100 + o 85.6 87.1 112.9 111.3 243 24.1
90:90:100 9.333 80.5 81.3 125.2 118.8 355 324
80:80:100 4.333 75.1 75.5 137.2 126.2 53.6 44.6
70:70:100 2.667 69.6 69.7 149.1 133.7 73.4 58.4
60:60:100 1.833 63.8 63.9 161.9 141.2 95.6 72.7
0:0:100 0.333 29.0 2329 2229
Voids
100:100: 100 + o0 - - 208.3 187.7 187.1 1874
90:90: 100 9.333 - - 215.1 190.0 179.8 181.9
80:80:100 4.333 - - 219.8 1924 177.6 177.7
70:70:100 2.667 - - 2255 194.8 178.0 174.8
60:60:100 1.833 - - 231.2 197.2 181.6 1733
0:0:100 0.333 265.2 246.5
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Figure 11 Dilatational stress concentration factor versus relative
distance along the transverse direction under macroscopic uniaxial
tension for various particle Young’s moduli, E;; (——) 100 MPa,
(—-—)40MPa, (—--—) 20MPa, (——) 2MPa, (--) voids.

modulus. As the particle Young’s modulus exceeds
2 MPa, the effective Young’s modulus and yield stress
approach their asymptotic values, respectively.

The distribution of dilatational and Von Mises
stress concentration factors along the path from the
centre of one rubber particle to the nearest corner of
the cell in the transverse direction under macroscopic
uniaxial tension at various particle Young’s moduli,
are shown in Figs 11 and 12, respectively. Both dilata-
tional and Von Mises stress concentration factors
decrease with increasing particle Young’s modulus in
the matrix but increase inside the particles. The par-
ticle Young’s modulus has a distinguishable influence
on the dilatational stress concentration factor inside
the particles. As the particle Young’s modulus in-
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Figure 12 Von Mises stress concentration factor versus relative
distance along the transverse direction under macroscopic uniaxial
tension for various particle Young’s moduli. For key, see Fig. 11.
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Figure 13 Normalized effective mechanical properties versus par-
ticle Poisson’s ratio. (@) E¢/E,,,, (H) v¢/vy, (V) k*/ky, (A) 5/

creases from 2 MPa to 20 MPa, the dilatational stress
concentration factor at the centre of particles increases
from 0.82 to 1.27.

3.3. Effects of particle Poisson’s ratio

The dependence of the effective Young’s modulus,
Poisson’s ratio, bulk modulus and yield stress nor-
malized by the corresponding matrix mechanical
property on the particle Poisson’s ratio at a particle
volume fraction of 26.18% obtained under macro-
scopic uniaxial tension, is shown in Fig. 13. The par-
ticle Young’s modulus is 2 MPa. There is only a small
increase of the effective Young’s modulus and yield
stress as the particle Poisson’s ratio increases from
0.49 to 0.4999, while the effective bulk modulus
and Poisson’s ratio increase rapidly as the particle
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Figure 14 Dilatational stress concentration factor versus relative
distance along the transverse direction under macroscopic uniaxial
tension for various particle Poisson’s ratios, vy (——) 0.4999,
(—-—)0.499833, (—--—) 0.499, (— —) 0.495, (- —) 0.49, (- - ) voids.
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Figure 15 Von Mises stress concentration factor versus relative
distance along the transverse direction under macroscopic uniaxial
tension for various particle Poisson’s ratios. For key, see Fig. 14.

Poisson’s ratio exceeds 0.499. The effective bulk
modulus doubles as the particle Poisson’s ratio in-
creases from 0.49 to 0.4999.

The distribution of the dilatational and Von Mises
stress concentration factors along the path from the
centre of one rubber particle to the nearest corner of
the cell in the transverse direction under macroscopic
uniaxial tension at various particle Poisson’s ratio is
shown in Figs 14 and 15, respectively. The effect of
particle Poisson’s ratio on the local stress concentra-
tion factors is similar to that of particle Young’s
modulus. Both dilatational and Von Mises stress con-
centration factors decrease with increasing particle
Poisson’s ratio in the matrix while they increase inside
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the rubber particles. Particle Poisson’s ratio has a no-
table influence on the dilatational stress concentration
factor inside rubber particles. As the particle Poisson’s
ratio increases from 0.49 to 0.4998, the dilatational
stress concentration factor inside rubber particles in-
creases from 0.035 to 0.82.

4. Conclusions

We have studied the effects of phase morphology and
mechanical properties of rubber particles on the local
stress and strain fields and the effective stress—strain
relations using our new micromechanical model. The
following conclusions can be drawn.

1. The level of effective stress decreases with in-
creasing particle volume fraction under macroscopic
uniaxial tension. The effective Young’s modulus and
yield stress decrease with increasing particle volume
fraction. The effective Poisson’s ratio increases with
increasing particle volume fraction for the par-
ticle/matrix system but decreases for the void/matrix
system. It is shown that the two-dimensional plane-
strain model underestimates the effective stress com-
pared with the three-dimensional model at the same
particle volume fraction.

2. The effective yield stress depends greatly on
stress triaxiality. The shapes of the effective initial
yield surface for the particle/matrix and void/matrix
systems are different from each other. This difference
becomes larger with increasing particle volume frac-
tion. At low stress triaxiality, the effective yield stresses
for both particle/matrix and void/matrix systems are
almost the same; but at high stress triaxiality, the
effective yield stress drops more rapidly in the latter
than the former system. These results confirm that
rubber cavitation is beneficial to matrix shear yielding
at high triaxiality although it may not be important at
low triaxiality.

3. All the maximum dilatational stress, direct stress
and Von Mises stress concentration factors in the
matrix increase steadily with increasing particle vol-
ume fraction under macroscopic uniaxial tension. In-
side the rubber particles, the Von Mises stress tends to
zero while the dilatational stress is almost constant
with the same order of magnitude as that of the matrix
because rubber has a low shear modulus and a high
bulk modulus. When compared with the three-dimen-
sional model results, the axisymmetric model under-
estimates while the two-dimensional plane-strain
model overestimates the increasing rate of the max-
imum stress concentrations in the matrix with particle
volume fraction.

4. High triaxial stress state promotes rubber cavita-
tion but discourages the development of shear defor-
mation in the matrix for the particle/matrix system.
Relative to the three-dimensional model, the spherical
model gives good predictions of the hydrostatic ten-
sion inside the rubber particles but yields somewhat
lower maximum stress concentrations in the matrix at
low effective stress triaxiality. The maximum direct
stress and Von Mises stress for the void/matrix system
are higher than those for the particle/matrix system
under a set of applied stresses. The difference in the



local stress fields between the particle/matrix and
void/matrix systems becomes significant with increas-
ing stress triaxiality. Rubber particles near a crack tip
are easy to cavitate due to the high stress triaxiality
there, so that extensive plastic deformation can be
developed in the matrix.

5. All the effective Young’s modulus, Poisson’s ra-
tio, bulk modulus and yield stress increase with in-
creasing particle Young’s modulus and Poisson’s
ratio. Both dilatational and Von Mises stress concen-
tration factors decrease with increasing particle
Young’s modulus and Poisson’s ratio in the matrix
but increase inside the rubber particles. The higher the
particle bulk modulus, the larger is the dilatational
stress inside the rubber particles and so the easier they
cavitate.
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